TELECOMMUNICATIONS M2078 65 2010년 12월 COMMUNICATIONS

특집: Knowledge Service

특집논문편집기	이용훈, 윤원일, 민대완	894
미래사회의 핵심적 융합 서비스로서의 경영과학	박진우 장태우	895
지식의 구조화 및 서비스를 위한 지식내재 모델과 모델베이스 관리 시스템	이번역	905
Brain-based Service Design	Jussi Kantola, Harmu Vanharanta	915
지식 서비스 기업과 사용자 기업간 지식전에 가능성에 관한 이론적 모형	김용진, 백승링	924
제조기업의 서비스화가 경영성과에 미치는 영향에 관한 실증적 연구	교우리, 임호순, 신호경	1 934 1
통합형 집단지성에 근거한 새로운 이러닝 시스템	음식일 이분용	943
지식 서비스 인자의 역량과 교육 과정에 관한 조사		953
자기선택에 의해 처발화된 품질을 갖는 두 네트워크 서비스간의 가격경쟁	조물고, 박병철	1967
항상된 DBZP을 적용한 갈릴레오 E1 신호획득 기법에 관한 연구	최순천	981
Fast Tree Join for Seamless Multicast Handover in FMIPv6-based Mobile Networks	Moneeb Gohar, Sang Tae Kim · Seok Joo Keh	1 993 1
다시점 카메라 시스템을 위한 상대적 특성 기반 색상 보정법	정제인, 호요성	1004
위치추정 핑거프린트 D8 구축 및 신호 전파특성 지도 기반 효율적인 D8 Update	문호출, 조성문	1017

"논문모집/열람 / 논문열람

2010년 TR 논문지 2011 ▼

Telecommunications Review 20권 6호 (2010년 12월)

☑ 20권 6호 ☑

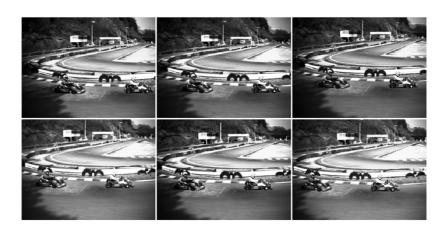
특집 논문 주제 Knowledge Service

■ 특집논문

PDF	논문제목	저자
72	미래 사회의 계량적 융합 서비스로서의 경영과학의 역활	박진우, 장태우
½	지식의 구조화 및 서비스를 위한 지식내재 모델과 모델베이스 관리 시 스템	이태억
₺	Brain-based Service Design	Jussi Kantola , Hannu Va nharanta
***	지식 서비스 기업과 사용자 기업간 지식전이 가능성에 관한 이론적 모 형	김용진, 백승령
72	제조기업의 서비스화가 경영성과에 미치는 영향에 관한 실증적 연구	고우리, 임호순, 신호정
₹2	통합형 집단지성에 근거한 새로운 이러닝 시스템	윤완철 , 이문용
₹2	지식 서비스 인재의 역량과 교육 과정에 관한 조사	민대환

■ 일반논문

PDF	논문제목	저자
Z	자기선택에 의해 차별화된 품질을 갖는 투 네트워크 서비스간의 가격경 쟁	조문교, 박명철
72	향상된 DBZP을 적용한 갈릴에오 E1 신호획득 기법에 관한 연구	최승현
Z	Fast Tree Join for Seamless Multicast Handover in FMIPv6-based Mobile Networks	Moneeb Gohar, Sang T ae Klm, Seok Joo koh
72	다시점 카메라 시스템을 위한 상대적 특성 기반 색상 보정법	정재일 , 호요성
₹	위치추정 핑거프린트 DB 구축 및 신호 전파특성 지도 기반 효율적인 DB Update	문호줄, 조성윤


A Color Correction Method Based on Relative for Multi-view Camera System Property

Jae-II Jung · Yo-Sung Ho

Although the multi-view camera system is widely used to capture a three-dimensional scene, it has several problems caused by increased cameras. Due to different camera properties between cameras, the color distributions of captured multi-view images can be inconsistent and it decreases the performance of post-image processes. In this paper, a method based on the relative camera property to correct color inconsistency problem is proposed. This algorithm is fully automatic without any pre-process and considers occlusion regions of the multi-view image. We model the relative camera property considering gain, offset, and gamma properties, and extract corresponding color information using the feature-based correspondence extracting algorithm. Coefficients of the relative camera property model are calculated on the basis of extracted color information using the non-linear regression method. Pixel values of the target view are corrected with the look-up table. Proposed algorithm shows the good subjective results and has better objective quality than the conventional color correction algorithm.

Keywords: Multi-view image, Multi-view camera system, Color inconsistency problem, Color correction, 3DTV

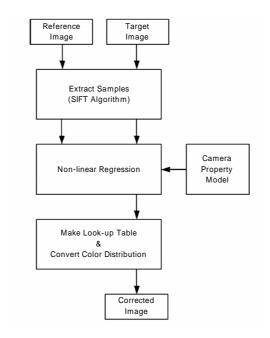
: TR09-080, :2009.08.11 :2010.08.05, :2010.11.11

1. (Race)

I.

2 3 3 . 3

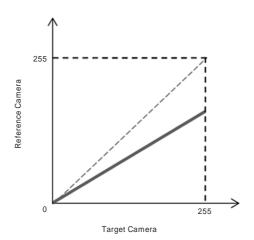
가 . 3 3 2


. [1].

RGB .

. II 3 [2]. III

, 가 . 가 (photo-electric)


1 가 . KDDI Race

2.

```
Ilie
                                                         Joshi가
                                             [3],[4].
                                               가
                           가
                                                       가
      (CCD)
                                 (CMOS)
                                                Frecker Chen
                                                 가
                                                                         [5],[6].
                                                     가
                                                                                    가
                                                                              가
                                                   가
    가
                                                 가
                                                        가
                                  (MVC:
Multiview Video Coding)
                                                             [7],[8]. Yamamoto
   가
        가
                                                        가
                                             가
                         가
                                             III.
```

가

(a)

255

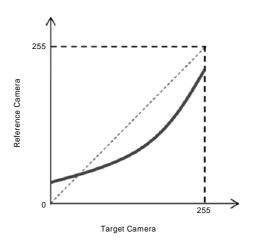
Target Camera

(b)

(c)

. 2

3.


image) (reference 1.

가 가 가

가

.

RGB

4.

$$y_{ref} = a(x_{tar})^r + b \tag{2}$$

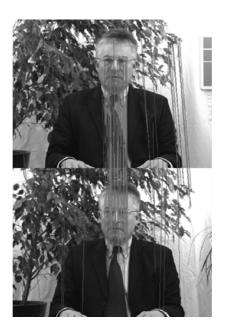
$$7 + b \qquad a, b \quad r \qquad ,$$

. 2. 8 가 0 255

Scale-Invariant Feature Transform(SIFT)

가 .

SIFT

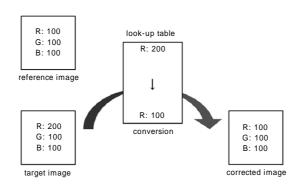

 $gain: y_{ref} = ax_{tar}$. SIFT

offset: $y_{ref} = x_{tar} + b$

 $gamma: y_{ref} = (x_{tar})^r \tag{1}$

. 5 Uli , (1) SIFT . y_{ref} . x_{tar} 4 7

(7)



5.

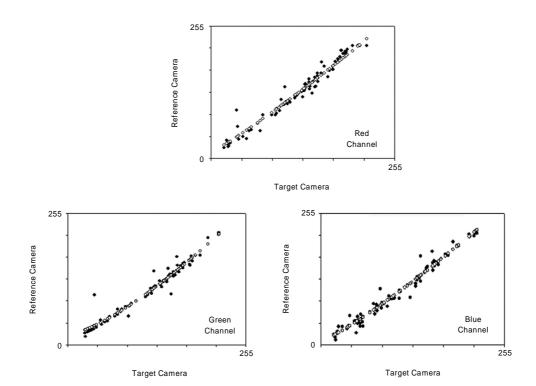
3. E β m RGB $7! \qquad E(\beta) = \sum_{m} e_i^2(\beta) \qquad (5)$ $= 0, r = 1 \qquad \beta$ $7! \qquad Sauss-Newton \qquad S$ $[9] \qquad \overline{\beta^{s+1}} = \beta^s + \delta\beta \qquad (6)$ $e_i(\beta) = y_i - f(x_i, \beta) \qquad (3)$

 y_i x_i $\delta\beta = -(\overline{J}_e^T J_e^{})^{-1} \overline{J}_e^T e$ $\beta \quad \{a,b,r\}$ f

 $e \quad e_i \qquad \qquad J \qquad \beta$ $m \qquad 3$ $f(x_i,\beta) = ax_i^r + b \qquad \qquad (4) \qquad \text{(Jacobian matrix)} \qquad . \qquad T$ $\qquad . \qquad \qquad (8)$

6.

7. Uli 3, 4


E가

RGB

9 가 IV.

4. HHI Uli . Uli RGB 3

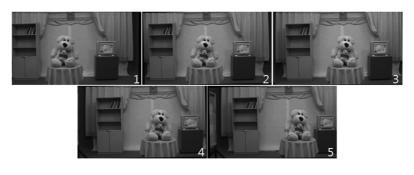
가

8.

9. Uli 4

1. Uli 4

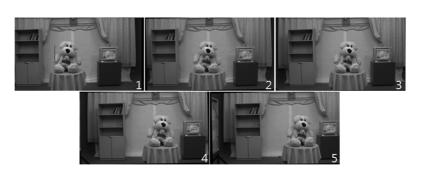
Coefficient	Red	Green	Blue
Gain	0.5456	0.1136	0.3702
Offset	13.9680	22.4963	8.9950
Gamma	1.1104	1.3740	1.1781


		/	
. 3	4		
3		4	
		. 1	

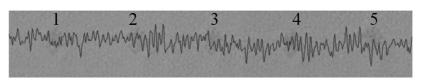
10.

SIFT . 8

가



(a)

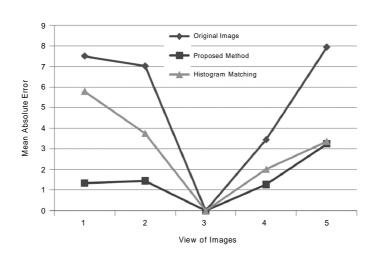


(b)

11.

(a)

(b)


12.

가 Flamenco Race 가 가 10 가

[5]

13. 가 (3)

14. MAE

. (IVIAE. IVIEATI ADSOIUTE ET

12 $MAE = \sum_{i=1}^{24} \frac{|R_i - R_{ref_i}| + |G_i - G_{ref_i}| + |B_i - B_{ref_i}|}{24 \times 3}$ (10) 12 (b) $7! \qquad R, G, B$

V.

3 가 3

.

·

. RGB

.

.

가

[]

- [1] M. Levoy and P. Hanrahan, "Light field rendering," SIGGRAPH 1996, Aug. 1996, pp. 33-42.
- [2] A. Majumder, W. Seales, M. Gopi, and H. Fuchs, "Immersive teleconferencing: A new algorithm to generate seamless panoramic video imagery," the Seventh ACM International Conference on Multimedia, Oct. 1999, pp. 169-178.
- [3] A. Ilie and G. Welch, "Ensuring color consistency across multiple cameras," IEEE International Conference on Computer Vision, Oct. 2005,

pp. II: 1268-1275.

- [4] N. Joshi, B. Wilburn, V. Vaish, M. Levoy, and M. Horowitz, "Automatic color calibration for large camera arrays," in UCSD CSE Tech. Rep. CS2005-0821, May 2005.
- [5] U. Fecker, M. Barkowsky, and A. Kaup, "Improving the Prediction Efficiency for Multi-View Video Coding Using Histogram Matching," Picture Coding Symposium, Apr. 2006, pp. 2-16.
- [6] Y. Chen, J. Chen, and C. Cai, "Luminance and chrominance correction for multi-view video using simplified color error model," Picture Coding Symposium, Apr. 2006, pp. 2-17.
- [7] G. Jiang, F. Shao, M. Yu, K. Chen, and X. Chen, "New Color Correction Approach to Multi-view Images with Region Correspondence," Lecture Notes in Computer Science, Vol. 4113, Aug. 2006, pp. 1224-1228.
- [8] K. Yamamoto, M. Kitahara, H. Kimata, T. Yendo, T. Fujii, M. Tanimoto, S. Shimizu, K. Kamikura, and Y. Yashima, "Multiview Video Coding Using View Interpolation and Color Correction," IEEE Transactions on Circuits and Systems for Video Technology, Vol. 17, No. 11, Nov. 2007, pp. 1436-1449.
- [9] A. Bjdrck, Numerical Methods for Least Squares Problem, SIAM, Philadelpia, 1996.
- [10] E. Lee, Y. Kang, J. Jung, Y. Ho, "3-D Video Generation using Hybrid Camera System," International Conference on Immersive Telecommunications 2009, May 2009, pp. T5(1-6).
- [11] GretagMacbeth Color Management Solutions.

(Jae-II Jung)

2005. 2: 2007. 2: 2008. 3~

: , 3 TV,

E-mail: jijung@gist.ac.kr Tel: +82-62-715-2258 Fax: +82-62-715-3164

(Yo-Sung Ho)

1981. 2: 1983. 2:

1989. 12: Univ. of Califonia, Santa Barbara,
Department of Electrical and
Computer Engineering,

1983. 3~1995. 9:

1990. 1~1993. 5: Philips , Senior

Research Member

1995. 9~

MPEG , 3 TV,

E-mail: hoyo@gist.ac.kr Tel:+82-62-715-2211 Fax:+82-62-715-3164